Advertisement
Original Article| Volume 23, ISSUE 6, P1491-1499, July 2014

Mdivi-1 Prevents Apoptosis Induced by Ischemia–Reperfusion Injury in Primary Hippocampal Cells via Inhibition of Reactive Oxygen Species–Activated Mitochondrial Pathway

      Apoptosis is one of the major mechanisms of neuronal injury during ischemic–reperfusion (I/R). Mitochondrial division inhibitor (mdivi-1) is a selective inhibitor of mitochondrial fission protein Drp1. The previous experiments support that mdivi-1 reduce I/R injury in the heart model of rat, but the neuroprotective effect of the mdivi-1 is not yet clearly defined at the cellular levels in brain. In our present study, we estimated a brain model of I/R injury in vitro by subjecting oxygen and glucose deprivation (OGD) followed by reoxygenation to the cultured rat primary hippocampal cells, which aimed to find the neuroprotective mechanism of mdivi-1. The cell was pretreated with mdivi-1 for 40 minutes and then ischemia for 6 hours followed by reperfusion for 20 hours. The redox state, cell apoptosis, and expression of Drp1, Bcl-2, Bax, and cytochrome C proteins were measured. The data showed that administration of mdivi-1 at the doses of 50 μM significantly reduced oxidative stress, attenuated cell apoptosis, upregulated Bcl-2 expression, and downregulated Drp1, Bax, and cytochrome C expression. The results suggested that mdivi-1 protected brain from OGD reperfusion injury, which through suppressing the ROS initiated mitochondrial pathway.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Stroke and Cerebrovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yu S.J.
        • Kim J.R.
        • Lee C.K.
        • et al.
        Gastrodiaelata blume and an active component, p-hydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions.
        Biol Pharm Bull. 2005; 6: 1016-1020
        • Mattson M.P.
        • Duan W.
        • Pedersen W.A.
        • et al.
        Neurodegenerative disorders and ischemic brain diseases.
        Apoptosis. 2001; 6: 69-81
        • Linnik M.D.
        • Zobrist R.H.
        • Hatfield M.D.
        Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats.
        Stroke. 1993; 24: 2002-2008
        • Qi J.
        • Hong Z.Y.
        • Xin H.
        • et al.
        Neuroprotective effects of leonurine on ischemia/reperfusion-induced mitochondrial dysfunctions in rat cerebral cortex.
        Biol Pharm Bull. 2010; 33: 1958-1964
        • Zhao J.
        • Yu S.
        • Zheng W.
        • et al.
        Curcumin improves outcomes and attenuates focal cerebral ischemic injury via anti-apoptotic mechanisms in rats.
        Neurochem Res. 2010; 35: 374-379
        • Zhao Q.
        • Wang S.
        • Li Y.
        • et al.
        The role of the mitochondrial calcium uniporter in cerebral ischemia/reperfusion injury in rats involves regulation of mitochondrial energy metabolism.
        Mol Med Rep. 2013; 7: 1073-1080
        • Finkel T.
        • Holbrook N.J.
        Oxidants, oxidative stress and the biology of ageing.
        Nature. 2000; 408: 239-247
        • Yao J.
        • Hamilton R.T.
        • Cadenas E.
        • et al.
        Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence.
        Biochim Biophys Acta. 2010; 1800: 1121-1126
        • Liang F.Q.
        • Godley B.F.
        Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration.
        Exp Eye Res. 2003; 76: 397-403
        • Agar J.
        • Durham H.
        Relevance of oxidative injury in the pathogenesis of motor neuron diseases.
        Amyotroph Lateral Scler Other Motor Neuron Disord. 2003; 4: 232-242
        • St-Pierre J.
        • Buckingham J.A.
        • Roebuck S.J.
        • et al.
        Topology of superoxide production from different sites in the mitochondrial electron transport chain.
        J Biol Chem. 2002; 277: 44784-44790
        • Brand M.D.
        The sites and topology of mitochondrial superoxide production.
        Exp Gerontol. 2010; 45: 466-472
        • Bossy-Wetzel E.
        • Barsoum M.J.
        • Godzik A.
        • et al.
        Mitochondrial fission in apoptosis, neurodegeneration and aging.
        Curr Opin Cell Biol. 2003; 15: 706-716
        • Chen H.
        • Chan D.C.
        Emerging functions of mammalian mitochondrial fusion and fission.
        Hum Mol Genet. 2005; 14: R283-289
        • Karbowski M.
        • Youle R.J.
        Dynamics of mitochondrial morphology in healthy cells and during apoptosis.
        Cell Death Differ. 2003; 10: 870-880
        • Cassidy-Stone A.
        • Chipuk J.E.
        • Ingerman E.
        • et al.
        Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization.
        Dev Cell. 2008; 14: 193-204
        • Tanaka A.
        • Youle R.J.
        A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis.
        Mol Cell. 2008; 29: 409-410
        • Zhang N.
        • Wang S.L.
        • Che L.
        • et al.
        A selective inhibitor of Drp1, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats.
        Neurosci Lett. 2013; 535: 104-109
        • Khar A.
        • Pardhasaradhi B.V.
        • Ali A.M.
        • et al.
        Protection conferred by Bcl-2 expression involves reduced oxidative stress and increased glutathione production during hypothermia-induced apoptosis in AK-5 tumor cells.
        Free Radic Biol Med. 2003; 35: 949-957
        • Zhao H.
        • Yenari M.A.
        • Sapolsky R.M.
        • et al.
        Mild postischemic hypothermia prolongs the time window for gene therapy by inhibiting cytochrome C release.
        Stroke. 2004; 35: 572-577
        • Brooks C.
        • Wei Q.
        • Cho S.G.
        • et al.
        Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models.
        J Clin Invest. 2009; 119: 1275-1285
        • Park S.W.
        • Kim K.Y.
        • Lindsey J.D.
        • et al.
        A selective inhibitor of drp1, mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina.
        Invest Ophthalmol Vis Sci. 2011; 52: 2837-2843
        • Banker G.A.
        • Cowan W.M.
        Rat hippocampal neurons in dispersed cell culture.
        Brain Res. 1977; 126 (397-342)
        • He P.
        • Zhang M.
        • He W.H.
        • et al.
        Effects of fluoride on oxidative stress and apoptotic in primary rat hippocampal neurons.
        Chin J Endemiol. 2006; 25: 264-267
        • Ong S.B.
        • Subrayan S.
        • Lim S.Y.
        • et al.
        Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury.
        Circulation. 2010; 121: 2012-2022
        • LeBel C.P.
        • Ischiropoulos H.
        • Bondy S.C.
        Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress.
        Chem Res Toxicol. 1992; 2: 227-231
        • Sun Y.
        • Oberley L.W.
        • Li Y.
        A simple method for clinical assay of superoxide dismutase.
        Clin Chem. 1988; 34: 497-500
        • Draper H.H.
        • Hadley M.
        Malondialdehyde determination as index of lipid peroxidation.
        Methods Enzymol. 1990; 186: 421-431
        • Niki E.
        Free radical initiators as source of water- or lipid-soluble peroxyl radicals.
        Methods Enzymol. 1990; 186: 100-108
        • Chen L.
        • Zhang Y.
        • Sun X.
        • et al.
        Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway.
        Bioorg Med Chem. 2009; 17: 4378-4382
        • McBride H.M.
        • Neuspiel M.
        • Wasiak S.
        Mitochondria: more than just a powerhouse.
        Curr Biol. 2006; 16: 551-560
        • Wen J.J.
        • Garg N.J.
        Mitochondrial generation of reactive oxygen species is enhanced at the Q(o) site of the complex III in the myocardium of Trypanosoma cruzi-infected mice: beneficial effects of an antioxidant.
        Bioenerg Biomembr. 2008; 40: 587-598
        • Funke F.
        • Gerich F.J.
        • Muller M.
        Dynamic, semi-quantitative imaging of intracellular ROS levels and redox status in rat hippocampal neurons.
        Neuroimage. 2011; 54: 2590-2602
        • Nordberg J.
        • Arner E.S.
        Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.
        Free Radic Biol Med. 2001; 31: 1287-1312
        • Miyamae M.
        • Camacho S.A.
        • Weiner M.V.
        • et al.
        Attenuation of postischaemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts.
        J Physiol. 1996; 2: 2145-2153
        • Basso E.
        • Fante L.
        • Fowlkes J.
        • et al.
        Properties of the permeability transition pore in mitochondria avoid of cyclophilin D.
        J Biol Chem. 2005; 19: 18558-18561
        • Regula K.M.
        • Kirshenbaum L.A.
        Apoptosis of ventricular myocytes: a means to an end.
        J Mol Cell Cardiol. 2005; 38: 3-13
        • von Harsdorf R.
        • Li P.F.
        • Dietz R.
        Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis.
        Circulation. 1999; 99: 2934-2941
        • Liu W.
        • Tian F.
        • Kurata T.
        • et al.
        Dynamic changes of mitochondrial fission proteins after transient cerebral ischemia in mice.
        Brain Res. 2012; 1456: 94-99
        • Fu Y.C.
        • Yin S.C.
        • Chi C.S.
        • et al.
        Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway.
        Apoptosis. 2006; 11: 2053-2063
        • Appierto V.
        • Tiberio P.
        • Villani M.G.
        • et al.
        PLAB induction in fenretinide-induced apoptosis of ovarian cancer cells occurs via a ROS-dependent mechanism involving ER stress and JNK activation.
        Carcinogenesis. 2009; 30: 824-831
        • Kim D.M.
        • Koo S.Y.
        • Jeon K.
        • et al.
        Rapid induction of apoptosis by combination of flavopiridol and tumor necrosis factor (TNF)-alpha or TNF-related apoptosis-inducing ligand in human cancer cell lines.
        Cancer Res. 2003; 63: 621-626
        • Deniaud A.
        • Sharaf el dein O.
        • Maillier E.
        • et al.
        Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis.
        Oncogene. 2008; 27: 285-299
        • Wang X.
        The expanding role of mitochondria in apoptosis.
        Genes Dev. 2001; 15: 2922-2933
        • Chen J.
        • Zhu R.L.
        • Nakayama M.
        • et al.
        Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia.
        Neurochem Res. 1996; 67: 64-71
        • Krajewski S.
        • Mai J.K.
        • Krajewska M.
        • et al.
        Upregulation of bax protein levels in neurons following cerebral ischemia.
        J Neurosci. 1995; 15: 6364-6376
        • Gross A.
        • McDonnell J.M.
        • Korsmeyer S.J.
        BCL-2 family members and the mitochondria in apoptosis.
        Genes Dev. 1999; 13: 1899-1911
        • Koistinaho J.
        • Hokfelt T.
        Altered gene expression in brain ischemia.
        Neuroreport. 1997; 8: i-viii
        • Martinou J.C.
        • Dubois-Dauphin M.
        • Staple J.K.
        • et al.
        Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia.
        Neuron. 1994; 13: 1017-1030
        • Jeong J.J.
        • Ha Y.M.
        • Jin Y.C.
        • et al.
        Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro.
        Food Chem Toxicol. 2009; 47: 1569-1576
        • Ravishankar S.
        • Ashraf Q.M.
        • Fritz K.
        • et al.
        Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate.
        Brain Res. 2001; 901: 23-29
        • Vela L.
        • Contel M.
        • Palomera L.
        • et al.
        Iminophosphorane-organogold(Ⅲ)complexes induce cell death through mitochondrial ROS production.
        J Inorg Biochem. 2011; 10: 1306-1313