Research Article| Volume 25, ISSUE 3, P515-522, March 2016

Download started.


Comparisons of Apparent Diffusion Coefficient Values in Penumbra, Infarct, and Normal Brain Regions in Acute Ischemic Stroke: Confirmatory Data Using Bootstrap Confidence Intervals, Analysis of Variance, and Analysis of Means

      Background and Objective

      There is no consensus about apparent diffusion coefficient (ADC) values in acute stroke regions that could be used by clinicians in a day-to-day clinical practice; regional measures using confidence intervals (CIs) and a graphic representation of means are scarce in the literature. Our aim in this study was to compare ADC values in infarct, penumbra, and normal brain regions in patients with acute ischemic stroke (AIS).


      This is a retrospective study of 100 magnetic resonance imaging data sets from AIS patients. ADC values were measured in the infarct, penumbra, and normal regions. Three hundred measurements underwent 1-way analysis of variance, analysis of means, and calculation of 95% and 84% CIs.


      There was a statistically significant difference at the P level less than .025 in ADC values for the 3 regions (F[2, 297] = 168.039, P ≤ .001), with no overlap of the CIs for the means among the regions: normal brain (mean [M] = .847, standard deviation [SD] = .103, 95% CI: .825-.866), infarct (M = .533, SD = .157, 95% CI: .501-.563), and penumbra (M = .764, SD = .110, 95% CI: .740-.787).


      ADC values might be used as reference data in acute stroke-specific populations; CIs would provide radiologists and clinicians with additional quantitative tools to evaluate penumbra, infarct, and normal brain tissue and to tailor follow-up and treatment options for selected patients.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Stroke and Cerebrovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Roldan-Valadez E.
        • Gonzalez-Gutierrez O.
        • Martinez-Lopez M.
        Diagnostic performance of PWI/DWI MRI parameters in discriminating hyperacute versus acute ischaemic stroke: finding the best thresholds.
        Clin Radiol. 2012; 67: 250-257
        • Desmond P.M.
        • Lovell A.C.
        • Rawlinson A.A.
        • et al.
        The value of apparent diffusion coefficient maps in early cerebral ischemia.
        AJNR Am J Neuroradiol. 2001; 22: 1260-1267
        • Oppenheim C.
        • Grandin C.
        • Samson Y.
        • et al.
        Is there an apparent diffusion coefficient threshold in predicting tissue viability in hyperacute stroke?.
        Stroke. 2001; 32: 2486-2491
        • Moon W.J.
        • Na D.G.
        • Ryoo J.W.
        • et al.
        Assessment of tissue viability using diffusion- and perfusion-weighted MRI in hyperacute stroke.
        Korean J Radiol. 2005; 6: 75-81
        • Essig M.
        • Shiroishi M.S.
        • Nguyen T.B.
        • et al.
        Perfusion MRI: the five most frequently asked technical questions.
        AJR Am J Roentgenol. 2013; 200: 24-34
        • Altman D.G.
        • Bland J.M.
        Comparing several groups using analysis of variance.
        BMJ. 1996; 312: 1472-1473
        • Mohammed M.A.
        • Holder R.
        Introducing analysis of means to medical statistics.
        BMJ Qual Saf. 2012; 21: 529-532
        • Ott E.R.
        Analysis of means: a graphical procedure.
        Ind Qual Control. 1967; 24: 101-109
        • Pfister R.
        • Janczyk M.
        Confidence intervals for two sample means: calculation, interpretation, and a few simple rules.
        Adv Cogn Psychol. 2013; 9: 74-80
        • Bruno A.
        • Durkalski V.L.
        • Hall C.E.
        • et al.
        The stroke hyperglycemia insulin network effort (shine) trial protocol: a randomized, blinded, efficacy trial of standard vs. intensive hyperglycemia management in acute stroke.
        Int J Stroke. 2014; 9: 246-251
        • Latchaw R.E.
        • Alberts M.J.
        • Lev M.H.
        • et al.
        Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association.
        Stroke. 2009; 40: 3646-3678
        • Heiss W.D.
        Ischemic penumbra: evidence from functional imaging in man.
        J Cereb Blood Flow Metab. 2000; 20: 1276-1293
        • Albers G.W.
        • Thijs V.N.
        • Wechsler L.
        • et al.
        Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (defuse) study.
        Ann Neurol. 2006; 60: 508-517
        • Mlynash M.
        • Lansberg M.G.
        • De Silva D.A.
        • et al.
        Refining the definition of the malignant profile: insights from the defuse-epithet pooled data set.
        Stroke. 2011; 42: 1270-1275
        • Tabachnik B.G.
        • Fidell S.L.
        Multivariate normality.
        in: Tabachnick B.G. Fidell L.S. Using multivariate statistics. Pearson Education Inc., Upper Saddle River, NJ2013: 252
        • Dawson B.
        • Trapp R.G.
        Assumptions in using the T distribution.
        in: Dawson B. Trapp R.G. Basic & clinical biostatistics. McGraw-Hill Companies, Inc., New York2004: 102-104
        • Barton B.
        • Peat J.
        Deciding whether a variable is normally distributed.
        in: Barton B. Peat J. Medical statistics. John Wiley & Sons, Ltd., Chichester, West Sussex, UK2014: 43
        • Pallant J.
        One-way analysis of variance.
        in: Pallant J. SPSS survival manual. Allen & Unwin, Crows Nest, NSW, Australia2011: 249-264
        • MacGregor-Fors I.
        • Payton M.E.
        Contrasting diversity values: statistical inferences based on overlapping confidence intervals.
        PLoS ONE. 2013; 8: e56794
        • Henderson A.R.
        The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data.
        Clin Chim Acta. 2005; 359: 1-26
        • Cohen J.W.
        Statistical power analysis for the behavioral sciences.
        2nd ed. Lawrence Erlbaum Associates, Hillsdale, NJ1988
        • Zivin J.A.
        Acute stroke therapy with tissue plasminogen activator (TPA) since it was approved by the U.S. Food and Drug Administration (FDA).
        Ann Neurol. 2009; 66: 6-10
        • Kleindorfer D.
        • Lindsell C.J.
        • Brass L.
        • et al.
        National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate.
        Stroke. 2008; 39: 924-928
        • Fiehler J.
        • Foth M.
        • Kucinski T.
        • et al.
        Severe ADC decreases do not predict irreversible tissue damage in humans.
        Stroke. 2002; 33: 79-86
        • Von Kummer R.
        Imaging of stroke pathology without predefined gold standard.
        Cerebrovasc Dis. 2002; 14: 270
        • Nicoli F.
        • Lefur Y.
        • Denis B.
        • et al.
        Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke: a brain proton magnetic resonance spectroscopic imaging study.
        Stroke. 2003; 34: e82-e87
        • An H.
        • Ford A.L.
        • Vo K.
        • et al.
        Signal evolution and infarction risk for apparent diffusion coefficient lesions in acute ischemic stroke are both time- and perfusion-dependent.
        Stroke. 2011; 42: 1276-1281
        • Kuhnke M.
        • Langner S.
        • Khaw A.V.
        • et al.
        [diffusion-weighted MRI—how many B-values are necessary?].
        Rofo. 2012; 184: 303-310
        • Shen J.M.
        • Xia X.W.
        • Kang W.G.
        • et al.
        The use of MRI apparent diffusion coefficient (ADC) in monitoring the development of brain infarction.
        BMC Med Imaging. 2011; 11: 2
        • Thomas R.G.
        • Lymer G.K.
        • Armitage P.A.
        • et al.
        Apparent diffusion coefficient thresholds and diffusion lesion volume in acute stroke.
        J Stroke Cerebrovasc Dis. 2013; 22: 906-909
        • Yu X.W.
        • Zhang Z.
        • Yang J.
        • et al.
        [Quantitative evaluations of ischemic stroke based on meta-analysis].
        Zhonghua Yi Xue Za Zhi. 2011; 91: 3066-3070
        • Lestro Henriques I.
        • Gutierrez-Fernandez M.
        • Rodriguez-Frutos B.
        • et al.
        Intralesional patterns of MRI ADC maps predict outcome in experimental stroke.
        Cerebrovasc Dis. 2015; 39: 293-301
        • McCormack J.
        • Vandermeer B.
        • Allan G.M.
        How confidence intervals become confusion intervals.
        BMC Med Res Methodol. 2013; 13: 134
        • Payton M.E.
        • Greenstone M.H.
        • Schenker N.
        Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance?.
        J Insect Sci. 2003; 3: 34
        • Menon B.K.
        • Smith E.E.
        • Modi J.
        • et al.
        Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions.
        AJNR Am J Neuroradiol. 2011; 32: 1640-1645
        • Kametsu Y.
        • Osuga S.
        • Hakim A.M.
        Apoptosis occurs in the penumbra zone during short-duration focal ischemia in the rat.
        J Cereb Blood Flow Metab. 2003; 23: 416-422
        • Sylaja P.N.
        • Coutts S.B.
        • Krol A.
        • et al.
        When to expect negative diffusion-weighted images in stroke and transient ischemic attack.
        Stroke. 2008; 39: 1898-1900
        • Engelter S.T.
        • Wetzel S.G.
        • Bonati L.H.
        • et al.
        The clinical significance of diffusion-weighted MR imaging in stroke and TIA patients.
        Swiss Med Wkly. 2008; 138: 729-740
        • Forkert N.D.
        • Kaesemann P.
        • Treszl A.
        • et al.
        Comparison of 10 TTP and Tmax estimation techniques for MR perfusion-diffusion mismatch quantification in acute stroke.
        AJNR Am J Neuroradiol. 2013; 34: 1697-1703
        • Sobesky J.
        • Zaro Weber O.
        • Lehnhardt F.G.
        • et al.
        Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke.
        Stroke. 2004; 35: 2843-2847
        • Olivot J.M.
        • Mlynash M.
        • Thijs V.N.
        • et al.
        Optimal Tmax threshold for predicting penumbral tissue in acute stroke.
        Stroke. 2009; 40: 469-475
        • Zaro-Weber O.
        • Moeller-Hartmann W.
        • Heiss W.D.
        • et al.
        Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography.
        Stroke. 2010; 41: 2817-2821
        • Roldan-Valadez E.
        • Rios-Piedra E.
        • Favila R.
        • et al.
        Diffusion tensor imaging-derived measures of fractional anisotropy across the pyramidal tract are influenced by the cerebral hemisphere but not by gender in young healthy volunteers: a split-plot factorial analysis of variance.
        Chin Med J. 2012; 125: 2180-2187
        • Sasaki M.
        • Yamada K.
        • Watanabe Y.
        • et al.
        Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study.
        Radiology. 2008; 249: 624-630
        • Fiehler J.
        Editorial comment—ADC and metabolites in stroke: even more confusion about diffusion?.
        Stroke. 2003; 34: e87-e88