Review Article| Volume 25, ISSUE 6, P1289-1300, June 2016

Vasopressin Hypersecretion-Associated Brain Edema Formation in Ischemic Stroke: Underlying Mechanisms


      Brain edema formation is a major cause of brain damages and the high mortality of ischemic stroke. The aim of this review is to explore the relationship between ischemic brain edema formation and vasopressin (VP) hypersecretion in addition to the oxygen and glucose deprivation and the ensuing reperfusion injury.


      Pertinent studies involving ischemic stroke, brain edema formation, astrocytes, and VP were identified by a search of the PubMed and the Web of Science databases in January 2016. Based on clinical findings and reports of animal experiments using ischemic stroke models, this systematic review reanalyzes the implication of individual reports in the edema formation and then establishes the inherent links among them.


      This systematic review reveals that cytotoxic edema and vasogenic brain edema in classical view are mainly under the influence of a continuous malfunction of astrocytic plasticity. Adaptive VP secretion can modulate membrane ion transport, water permeability, and blood–brain barrier integrity, which are largely via changing astrocytic plasticity. Maladaptive VP hypersecretion leads to disruptions of ion and water balance across cell membranes as well as the integrity of the blood–brain barrier. This review highlights our current understandings of the cellular mechanisms underlying ischemic brain edema formation and its association with VP hypersecretion.


      VP hypersecretion promotes brain edema formation in ischemic stroke by disrupting hydromineral balance in the neurovascular unit; suppressing VP hypersecretion has the potential to alleviate ischemic brain edema.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Stroke and Cerebrovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kurisu K.
        • Abumiya T.
        • Nakamura H.
        • et al.
        Transarterial regional brain hypothermia inhibits acute aquaporin-4 surge and sequential microvascular events in ischemia/reperfusion injury.
        Neurosurgery. 2015; 0: 1-10
        • Khanna A.
        • Kahle K.T.
        • Walcott B.P.
        • et al.
        Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema.
        Transl Stroke Res. 2014; 5: 3-16
        • O'Donnell M.E.
        • Chen Y.J.
        • Lam T.I.
        • et al.
        Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger.
        J Cereb Blood Flow Metab. 2013; 33: 225-234
        • Abbott N.J.
        Blood-brain barrier structure and function and the challenges for CNS drug delivery.
        J Inherit Metab Dis. 2013; 36: 437-449
        • Vargova L.
        • Sykova E.
        Astrocytes and extracellular matrix in extrasynaptic volume transmission.
        Philos Trans R Soc Lond B Biol Sci. 2014; 369: 20130608
        • Zador Z.
        • Stiver S.
        • Wang V.
        • et al.
        Role of aquaporin-4 in cerebral edema and stroke.
        Handb Exp Pharmacol. 2009; : 159-170
        • Ayus J.C.
        • Achinger S.G.
        • Arieff A.
        Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia.
        Am J Physiol Renal Physiol. 2008; 295: F619-F624
        • Eriksson P.S.
        • Nilsson M.
        • Wagberg M.
        • et al.
        Volume regulation of single astroglial cells in primary culture.
        Neurosci Lett. 1992; 143: 195-199
        • Lang F.
        • Voelkl J.
        Therapeutic potential of serum and glucocorticoid inducible kinase inhibition.
        Expert Opin Investig Drugs. 2013; 22: 701-714
        • Engelhardt B.
        • Sorokin L.
        The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction.
        Semin Immunopathol. 2009; 31: 497-511
        • Day R.E.
        • Kitchen P.
        • Owen D.S.
        • et al.
        Human aquaporins: regulators of transcellular water flow.
        Biochim Biophys Acta. 2014; 1840: 1492-1506
        • Kuroiwa T.
        • Ueki M.
        • Chen Q.
        • et al.
        Biomechanical characteristics of brain edema: the difference between vasogenic-type and cytotoxic-type edema.
        Acta Neurochir Suppl (Wien). 1994; 60: 158-161
        • Hansen A.J.
        • Olsen C.E.
        Brain extracellular space during spreading depression and ischemia.
        Acta Physiol Scand. 1980; 108: 355-365
        • Mori K.
        • Miyazaki M.
        • Iwase H.
        • et al.
        Temporal profile of changes in brain tissue extracellular space and extracellular ion (Na(+), K(+)) concentrations after cerebral ischemia and the effects of mild cerebral hypothermia.
        J Neurotrauma. 2002; 19: 1261-1270
        • Sun J.
        • Ren X.
        • Simpkins J.W.
        Sequential upregulation of superoxide dismutase 2 and heme oxygenase 1 by tert-butylhydroquinone protects mitochondria during oxidative stress.
        Mol Pharmacol. 2015; 88: 437-449
        • Babu C.S.
        • Ramanathan M.
        Post-ischemic administration of nimodipine following focal cerebral ischemic-reperfusion injury in rats alleviated excitotoxicity, neurobehavioural alterations and partially the bioenergetics.
        Int J Dev Neurosci. 2011; 29: 93-105
        • Douglas H.A.
        • Callaway J.K.
        • Sword J.
        • et al.
        Potent inhibition of anoxic depolarization by the sodium channel blocker dibucaine.
        J Neurophysiol. 2011; 105: 1482-1494
        • Seidel J.L.
        • Escartin C.
        • Ayata C.
        • et al.
        Multifaceted roles for astrocytes in spreading depolarization: a target for limiting spreading depolarization in acute brain injury?.
        Glia. 2016; 64: 5-20
        • Dreier J.P.
        The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease.
        Nat Med. 2011; 17: 439-447
        • Enger R.
        • Tang W.
        • Vindedal G.F.
        • et al.
        Dynamics of ionic shifts in cortical spreading depression.
        Cereb Cortex. 2015; 25: 4469-4476
        • Chvatal A.
        • Anderova M.
        • Sykova E.
        Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ.
        J Neurosci Res. 2004; 78: 668-682
        • Hansson E.
        • Johansson B.B.
        • Westergren I.
        • et al.
        Mechanisms of glutamate induced swelling in astroglial cells.
        Acta Neurochir Suppl (Wien). 1994; 60: 12-14
        • Song D.
        • Xu J.
        • Du T.
        • et al.
        Inhibition of brain swelling after ischemia-reperfusion by beta-adrenergic antagonists: correlation with increased K+ and decreased Ca2+ concentrations in extracellular fluid.
        Biomed Res Int. 2014; 2014: 873590
        • Steffensen A.B.
        • Sword J.
        • Croom D.
        • et al.
        Chloride cotransporters as a molecular mechanism underlying spreading depolarization-induced dendritic beading.
        J Neurosci. 2015; 35: 12172-12187
        • Uckermann O.
        • Vargova L.
        • Ulbricht E.
        • et al.
        Glutamate-evoked alterations of glial and neuronal cell morphology in the guinea pig retina.
        J Neurosci. 2004; 24: 10149-10158
        • Song D.
        • Xu J.
        • Hertz L.
        • et al.
        Regulatory volume increase in astrocytes exposed to hypertonic medium requires beta1 -adrenergic Na(+) /K(+) -ATPase stimulation and glycogenolysis.
        J Neurosci Res. 2015; 93: 130-139
        • Yan Y.
        • Dempsey R.J.
        • Flemmer A.
        • et al.
        Inhibition of Na(+)-K(+)-Cl(-) cotransporter during focal cerebral ischemia decreases edema and neuronal damage.
        Brain Res. 2003; 961: 22-31
        • Su G.
        • Kintner D.B.
        • Flagella M.
        • et al.
        Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release.
        Am J Physiol Cell Physiol. 2002; 282: C1147-C1160
        • Hertz L.
        • Xu J.
        • Chen Y.
        • et al.
        Antagonists of the vasopressin V1 receptor and of the beta(1)-adrenoceptor inhibit cytotoxic brain edema in stroke by effects on astrocytes—but the mechanisms differ.
        Curr Neuropharmacol. 2014; 12: 308-323
        • Zhao Y.X.
        • Cui M.
        • Chen S.F.
        • et al.
        Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1.
        CNS Neurosci Ther. 2014; 20: 528-538
        • Chiganos Jr, T.C.
        • Jensen W.
        • Rousche P.J.
        Electrophysiological response dynamics during focal cortical infarction.
        J Neural Eng. 2006; 3: L15-L22
        • Yang M.
        • Gao F.
        • Liu H.
        • et al.
        Temporal changes in expression of aquaporin-3, -4, -5 and -8 in rat brains after permanent focal cerebral ischemia.
        Brain Res. 2009; 1290: 121-132
        • Patel A.J.
        • Lauritzen I.
        • Lazdunski M.
        • et al.
        Disruption of mitochondrial respiration inhibits volume-regulated anion channels and provokes neuronal cell swelling.
        J Neurosci. 1998; 18: 3117-3123
        • DeLorenzo R.J.
        • Sun D.A.
        • Blair R.E.
        • et al.
        An in vitro model of stroke-induced epilepsy: elucidation of the roles of glutamate and calcium in the induction and maintenance of stroke-induced epileptogenesis.
        Int Rev Neurobiol. 2007; 81: 59-84
        • Werth J.L.
        • Park T.S.
        • Silbergeld D.L.
        • et al.
        Excitotoxic swelling occurs in oxygen and glucose deprived human cortical slices.
        Brain Res. 1998; 782: 248-254
        • Jia S.
        • Xia Q.
        • Zhang B.
        • et al.
        Involvement of the paraventricular nucleus in the occurrence of arrhythmias in middle cerebral artery occlusion rats.
        J Stroke Cerebrovasc Dis. 2015; 24: 844-851
        • Vargova L.
        • Jendelova P.
        • Chvatal A.
        • et al.
        Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord.
        J Cereb Blood Flow Metab. 2001; 21: 1077-1089
        • Stanika R.I.
        • Winters C.A.
        • Pivovarova N.B.
        • et al.
        Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons.
        Neurobiol Dis. 2010; 37: 403-411
        • Beck J.
        • Lenart B.
        • Kintner D.B.
        • et al.
        Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity.
        J Neurosci. 2003; 23: 5061-5068
        • Vogler S.
        • Grosche A.
        • Pannicke T.
        • et al.
        Hypoosmotic and glutamate-induced swelling of bipolar cells in the rat retina: comparison with swelling of Muller glial cells.
        J Neurochem. 2013; 126: 372-381
        • Matsumoto Y.
        • Yamamoto S.
        • Suzuki Y.
        • et al.
        Na+/H+ exchanger inhibitor, SM-20220, is protective against excitotoxicity in cultured cortical neurons.
        Stroke. 2004; 35: 185-190
        • Marrif H.
        • Juurlink B.H.
        Astrocytes respond to hypoxia by increasing glycolytic capacity.
        J Neurosci Res. 1999; 57: 255-260
        • Kempski O.S.
        [Neuroprotection. Models and basic principles].
        Anaesthesist. 1994; 43: S25-S33
        • Mori S.
        • Morishima S.
        • Takasaki M.
        • et al.
        Impaired activity of volume-sensitive anion channel during lactacidosis-induced swelling in neuronally differentiated NG108-15 cells.
        Brain Res. 2002; 957: 1-11
        • Leng T.
        • Shi Y.
        • Xiong Z.G.
        • et al.
        Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?.
        Prog Neurobiol. 2014; 115: 189-209
        • Del Bigio M.R.
        • Fedoroff S.
        • Qualtiere L.F.
        Morphology of astroglia in colony cultures following transient exposure to potassium ion, hypoosmolarity and vasopressin.
        J Neurocytol. 1992; 21: 7-18
        • Hansson E.
        • Blomstrand F.
        • Khatibi S.
        • et al.
        Glutamate induced astroglial swelling—methods and mechanisms.
        Acta Neurochir Suppl. 1997; 70: 148-151
        • De Raedt S.
        • De Vos A.
        • De Keyser J.
        Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area?.
        J Neurol Sci. 2015; 348: 24-34
        • Hansson E.
        • Muyderman H.
        • Leonova J.
        • et al.
        Astroglia and glutamate in physiology and pathology: aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication.
        Neurochem Int. 2000; 37: 317-329
        • Mogoanta L.
        • Ciurea M.
        • Pirici I.
        • et al.
        Different dynamics of aquaporin 4 and glutamate transporter-1 distribution in the perineuronal and perivascular compartments during ischemic stroke.
        Brain Pathol. 2014; 24: 475-493
        • Rebel A.
        • Koehler R.C.
        • Martin L.J.
        In situ immunoradiographic method for quantification of specific proteins in normal and ischemic brain regions.
        J Neurosci Methods. 2005; 143: 227-235
        • Namura S.
        • Maeno H.
        • Takami S.
        • et al.
        Inhibition of glial glutamate transporter GLT-1 augments brain edema after transient focal cerebral ischemia in mice.
        Neurosci Lett. 2002; 324: 117-120
        • Huang D.
        • Li S.
        • Dai Z.
        • et al.
        Novel gradient echo sequencebased amide proton transfer magnetic resonance imaging in hyperacute cerebral infarction.
        Mol Med Rep. 2015; 11: 3279-3284
        • Kempski O.
        • Staub F.
        • Jansen M.
        • et al.
        Glial swelling during extracellular acidosis in vitro.
        Stroke. 1988; 19: 385-392
        • Wu W.N.
        • Wu P.F.
        • Chen X.L.
        • et al.
        Sinomenine protects against ischaemic brain injury: involvement of co-inhibition of acid-sensing ion channel 1a and L-type calcium channels.
        Br J Pharmacol. 2011; 164: 1445-1459
        • Lam T.I.
        • Brennan-Minnella A.M.
        • Won S.J.
        • et al.
        Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase.
        Proc Natl Acad Sci USA. 2013; 110: E4362-E4368
        • Goodyear M.J.
        • Crewther S.G.
        • Junghans B.M.
        A role for aquaporin-4 in fluid regulation in the inner retina.
        Vis Neurosci. 2009; 26: 159-165
        • Strohschein S.
        • Huttmann K.
        • Gabriel S.
        • et al.
        Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus.
        Glia. 2011; 59: 973-980
        • Vella J.
        • Zammit C.
        • Di Giovanni G.
        • et al.
        The central role of aquaporins in the pathophysiology of ischemic stroke.
        Front Cell Neurosci. 2015; 9: 108
        • Anderova M.
        • Benesova J.
        • Mikesova M.
        • et al.
        Altered astrocytic swelling in the cortex of alpha-syntrophin-negative GFAP/EGFP mice.
        PLoS ONE. 2014; 9: e113444
        • Brillault J.
        • Lam T.I.
        • Rutkowsky J.M.
        • et al.
        Hypoxia effects on cell volume and ion uptake of cerebral microvascular endothelial cells.
        Am J Physiol Cell Physiol. 2008; 294: C88-C96
        • Yuen N.
        • Lam T.I.
        • Wallace B.K.
        • et al.
        Ischemic factor-induced increases in cerebral microvascular endothelial cell Na/H exchange activity and abundance: evidence for involvement of ERK1/2 MAP kinase.
        Am J Physiol Cell Physiol. 2014; 306: C931-C942
        • Martinez-Valverde T.
        • Vidal-Jorge M.
        • Martinez-Saez E.
        • et al.
        Sulfonylurea receptor 1 in humans with post-traumatic brain contusions.
        J Neurotrauma. 2015; 32: 1478-1487
        • Moran J.
        • Morales-Mulia S.
        • Hernandez-Cruz A.
        • et al.
        Regulatory volume decrease and associated osmolyte fluxes in cerebellar granule neurons are calcium independent.
        J Neurosci Res. 1997; 47: 144-154
        • Shen C.C.
        • Yang Y.C.
        • Chiao M.T.
        • et al.
        Characterization of endogenous neural progenitor cells after experimental ischemic stroke.
        Curr Neurovasc Res. 2010; 7: 6-14
        • Verbalis J.G.
        Hyponatremia with intracranial disease: not often cerebral salt wasting.
        J Clin Endocrinol Metab. 2014; 99: 59-62
        • Haskew-Layton R.E.
        • Rudkouskaya A.
        • Jin Y.
        • et al.
        Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo.
        PLoS ONE. 2008; 3: e3543
        • Hazell A.S.
        Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies.
        Neurochem Int. 2007; 50: 941-953
        • Hawkins K.E.
        • DeMars K.M.
        • Singh J.
        • et al.
        Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke.
        J Neurochem. 2014; 129: 130-142
        • Kim J.
        • Jung Y.
        Different expressions of AQP1, AQP4, eNOS, and VEGF proteins in ischemic versus non-ischemic cerebropathy in rats: potential roles of AQP1 and eNOS in hydrocephalic and vasogenic edema formation.
        Anat Cell Biol. 2011; 44: 295-303
        • Bauer A.T.
        • Burgers H.F.
        • Rabie T.
        • et al.
        Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement.
        J Cereb Blood Flow Metab. 2010; 30: 837-848
        • Simard J.M.
        • Kahle K.T.
        • Gerzanich V.
        Molecular mechanisms of microvascular failure in central nervous system injury—synergistic roles of NKCC1 and SUR1/TRPM4.
        J Neurosurg. 2010; 113: 622-629
        • Kim J.E.
        • Ryu H.J.
        • Kang T.C.
        Status epilepticus induces vasogenic edema via tumor necrosis factor-alpha/ endothelin-1-mediated two different pathways.
        PLoS ONE. 2013; 8: e74458
        • Dalkara T.
        • Alarcon-Martinez L.
        Cerebral microvascular pericytes and neurogliovascular signaling in health and disease.
        Brain Res. 2015; 1623: 3-17
        • Pittman Q.J.
        • Riphagen C.L.
        • Lederis K.
        Release of immunoassayable neurohypophyseal peptides from rat spinal cord, in vivo.
        Brain Res. 1984; 300: 321-326
        • Landgraf R.
        • Malkinson T.
        • Horn T.
        • et al.
        Release of vasopressin and oxytocin by paraventricular stimulation in rats.
        Am J Physiol. 1990; 258: R155-R159
        • Ray P.K.
        • Choudhury S.R.
        Vasopressinergic neurons and the associated blood vessels in the rat anterior hypothalamus: an immunohistochemical study.
        Histol Histopathol. 1990; 5: 73-82
        • Kozniewska E.
        • Romaniuk K.
        Vasopressin in vascular regulation and water homeostasis in the brain.
        J Physiol Pharmacol. 2008; 59: 109-116
        • Barreca T.
        • Gandolfo C.
        • Corsini G.
        • et al.
        Evaluation of the secretory pattern of plasma arginine vasopressin in stroke patients.
        Cerebrovasc Dis. 2001; 11: 113-118
        • Katan M.
        • Fluri F.
        • Morgenthaler N.G.
        • et al.
        Copeptin: a novel, independent prognostic marker in patients with ischemic stroke.
        Ann Neurol. 2009; 66: 799-808
        • Bartrons J.
        • Figueras J.
        • Jimenez R.
        • et al.
        Vasopressin in cerebrospinal fluid of newborns with hypoxic-ischemic encephalopathy. Preliminary report.
        J Perinat Med. 1993; 21: 399-403
        • Widmayer M.A.
        • Browning J.L.
        • Gopinath S.P.
        • et al.
        Increased intracranial pressure is associated with elevated cerebrospinal fluid ADH levels in closed-head injury.
        Neurol Res. 2010; 32: 1021-1026
        • Szmydynger-Chodobska J.
        • Zink B.J.
        • Chodobski A.
        Multiple sites of vasopressin synthesis in the injured brain.
        J Cereb Blood Flow Metab. 2011; 31: 47-51
        • Chang Y.
        • Chen T.Y.
        • Chen C.H.
        • et al.
        Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy.
        J Appl Physiol. 2006; 100: 1445-1451
        • Molnar A.H.
        • Varga C.
        • Berko A.
        • et al.
        Prevention of hypoxic brain oedema by the administration of vasopressin receptor antagonist OPC-31260.
        Prog Brain Res. 2008; 170: 519-525
        • Zhao X.Y.
        • Wu C.F.
        • Yang J.
        • et al.
        Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils.
        Neuropeptides. 2015; 51: 55-62
        • Szmydynger-Chodobska J.
        • Chung I.
        • Kozniewska E.
        • et al.
        Increased expression of vasopressin v1a receptors after traumatic brain injury.
        J Neurotrauma. 2004; 21: 1090-1102
        • Molnar A.H.
        • Varga C.
        • Berko A.
        • et al.
        Inhibitory effect of vasopressin receptor antagonist OPC-31260 on experimental brain oedema induced by global cerebral ischaemia.
        Acta Neurochir (Wien). 2008; 150: 265-271
        • Ribeiro Mde C.
        • Hirt L.
        • Bogousslavsky J.
        • et al.
        Time course of aquaporin expression after transient focal cerebral ischemia in mice.
        J Neurosci Res. 2006; 83: 1231-1240
        • Kleindienst A.
        • Dunbar J.G.
        • Glisson R.
        • et al.
        The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury.
        Acta Neurochir (Wien). 2013; 155: 151-164
        • Wallace B.K.
        • Foroutan S.
        • O'Donnell M.E.
        Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase.
        Am J Physiol Cell Physiol. 2011; 301: C316-C326
        • Shuaib A.
        • Xu Wang C.
        • Yang T.
        • et al.
        Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model.
        Stroke. 2002; 33: 3033-3037
        • Vakili A.
        • Kataoka H.
        • Plesnila N.
        Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia.
        J Cereb Blood Flow Metab. 2005; 25: 1012-1019
        • Oikawa R.
        • Hosoda C.
        • Nasa Y.
        • et al.
        Decreased susceptibility to salt-induced hypertension in subtotally nephrectomized mice lacking the vasopressin V1a receptor.
        Cardiovasc Res. 2010; 87: 187-194
        • Alonso G.
        • Gallibert E.
        • Lafont C.
        • et al.
        Intrahypothalamic angiogenesis induced by osmotic stimuli correlates with local hypoxia: a potential role of confined vasoconstriction induced by dendritic secretion of vasopressin.
        Endocrinology. 2008; 149: 4279-4288
        • Hockel K.
        • Scholler K.
        • Trabold R.
        • et al.
        Vasopressin V(1a) receptors mediate posthemorrhagic systemic hypertension thereby determining rebleeding rate and outcome after experimental subarachnoid hemorrhage.
        Stroke. 2012; 43: 227-232
        • Faraco G.
        • Wijasa T.S.
        • Park L.
        • et al.
        Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress.
        J Cereb Blood Flow Metab. 2014; 34: 852-860
        • Szmydynger-Chodobska J.
        • Fox L.M.
        • Lynch K.M.
        • et al.
        Vasopressin amplifies the production of proinflammatory mediators in traumatic brain injury.
        J Neurotrauma. 2010; 27: 1449-1461
        • Armstead W.M.
        Vasopressin-induced protein kinase C-dependent superoxide generation contributes to atp-sensitive potassium channel but not calcium-sensitive potassium channel function impairment after brain injury.
        Stroke. 2001; 32: 1408-1414
        • Okuno K.
        • Taya K.
        • Marmarou C.R.
        • et al.
        The modulation of aquaporin-4 by using PKC-activator (phorbol myristate acetate) and V1a receptor antagonist (SR49059) following middle cerebral artery occlusion/reperfusion in the rat.
        Acta Neurochir Suppl. 2008; 102: 431-436
        • Marmarou C.R.
        • Liang X.
        • Abidi N.H.
        • et al.
        Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury.
        Brain Res. 2014; 1581: 89-102
        • Liu X.
        • Nakayama S.
        • Amiry-Moghaddam M.
        • et al.
        Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke.
        Neurocrit Care. 2010; 12: 124-131
        • Moeller H.B.
        • Fenton R.A.
        • Zeuthen T.
        • et al.
        Vasopressin-dependent short-term regulation of aquaporin 4 expressed in Xenopus oocytes.
        Neuroscience. 2009; 164: 1674-1684
        • Steiner E.
        • Enzmann G.U.
        • Lin S.
        • et al.
        Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation.
        Glia. 2012; 60: 1646-1659
        • Curras-Collazo M.C.
        • Patel U.B.
        • Hussein M.O.
        Reduced susceptibility of magnocellular neuroendocrine nuclei of the rat hypothalamus to transient focal ischemia produced by middle cerebral artery occlusion.
        Exp Neurol. 2002; 178: 268-279
        • Brisson C.D.
        • Andrew R.D.
        A neuronal population in hypothalamus that dramatically resists acute ischemic injury compared to neocortex.
        J Neurophysiol. 2012; 108: 419-430
        • Wang Y.-F.
        • Liu L.-X.
        • Yang H.-P.
        Neurophysiological involvement in hypervolemic hyponatremia-evoked by hypersecretion of vasopressin.
        Transl Biomed. 2011; 2: 3
        • Szczepanska-Sadowska E.
        • Cudnoch-Jedrzejewska A.
        • Ufnal M.
        • et al.
        Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases.
        J Physiol Pharmacol. 2010; 61: 509-521
        • Li W.A.
        • Moore-Langston S.
        • Chakraborty T.
        • et al.
        Hyperglycemia in stroke and possible treatments.
        Neurol Res. 2013; 35: 479-491
        • Kim M.J.
        • Hong S.J.
        • Yang J.
        • et al.
        Silkworm (Bombyx mori L.) reduces vasopressin expression in the hypothalamus of streptozotocin-induced diabetic mice.
        Neurol Res. 2007; 29: S72-S77
        • Davalos A.
        • Shuaib A.
        • Wahlgren N.G.
        Neurotransmitters and pathophysiology of stroke: evidence for the release of glutamate and other transmitters/mediators in animals and humans.
        J Stroke Cerebrovasc Dis. 2000; 9: 2-8
        • He M.
        • Chen M.
        • Wang J.
        • et al.
        Relationship between glutamate in the limbic system and hypothalamus-pituitary-adrenal axis after middle cerebral artery occlusion in rats.
        Chin Med J. 2003; 116: 1492-1496
        • Lam T.I.
        • Wise P.M.
        • O'Donnell M.E.
        Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin.
        Am J Physiol Cell Physiol. 2009; 297: C278-C289
        • Capone C.
        • Faraco G.
        • Peterson J.R.
        • et al.
        Central cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension.
        J Neurosci. 2012; 32: 4878-4886
        • Brown C.H.
        • Bains J.S.
        • Ludwig M.
        • et al.
        Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms.
        J Neuroendocrinol. 2013; 25: 678-710
        • Abraham H.
        • Somogyvari-Vigh A.
        • Maderdrut J.L.
        • et al.
        Rapidly activated microglial cells in the preoptic area may play a role in the generation of hyperthermia following occlusion of the middle cerebral artery in the rat.
        Exp Brain Res. 2003; 153: 84-91
        • Zhao Y.
        • Lai W.
        • Xu Y.
        • et al.
        Exogenous and endogenous therapeutic effects of combination sodium ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia.
        Metab Brain Dis. 2013; 28: 655-666
        • Wang Y.F.
        • Hatton G.I.
        Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions.
        J Neurosci. 2009; 29: 1743-1754
        • Wang Y.F.
        • Sun M.Y.
        • Hou Q.
        • et al.
        Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus.
        Glia. 2013; 61: 529-538
        • Hatton G.I.
        Function-related plasticity in hypothalamus.
        Annu Rev Neurosci. 1997; 20: 375-397
        • Theodosis D.T.
        • Poulain D.A.
        • Oliet S.H.
        Activity-dependent structural and functional plasticity of astrocyte-neuron interactions.
        Physiol Rev. 2008; 88: 983-1008
        • Wang Y.F.
        • Zhu H.
        [Mechanisms underlying astrocyte regulation of hypothalamic neuroendocrine neuron activity].
        Sheng Li Ke Xue Jin Zhan. 2014; 45: 177-184
        • Zeynalov E.
        • Jones S.M.
        • Seo J.W.
        • et al.
        Arginine-vasopressin receptor blocker conivaptan reduces brain edema and blood-brain barrier disruption after experimental stroke in mice.
        PLoS ONE. 2015; 10: e0136121
        • Schutz H.
        • Gray D.A.
        • Gerstberger R.
        ANF-induced modulation of ADH-release in the rabbit and Peking duck.
        Prog Brain Res. 1992; 91: 63-68
        • Ufnal M.
        • Skrzypecki J.
        Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs.
        Neuropeptides. 2014; 48: 65-73
        • Veening J.G.
        • Olivier B.
        Intranasal administration of oxytocin: behavioral and clinical effects, a review.
        Neurosci Biobehav Rev. 2013; 37: 1445-1465
        • Ster J.
        • Colomer C.
        • Monzo C.
        • et al.
        Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.
        J Neurosci. 2005; 25: 2267-2276
        • Liu X.F.
        • Fawcett J.R.
        • Thorne R.G.
        • et al.
        Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage.
        J Neurol Sci. 2001; 187: 91-97