Advertisement

Feasibility of deconvolution-based multiphase CT angiography perfusion maps in acute ischemic stroke: Simulation and concordance with CT perfusion

      Abstract

      Objectives

      Integration of CT perfusion (CTP) with requisite non-contrast CT and CT angiography (CTA) stroke imaging may allow efficient stroke lesion volume measurement. Using surrogate images from CTP, we simulated the feasibility of using multiphase CTA (mCTA) to generate perfusion maps and assess target mismatch profiles.

      Materials and methods

      Patients with acute ischemic stroke who received admission CTP were included in this study. Four CTP images (surrogate mCTA, one pre-contrast and three post-contrast, starting at the arterial peak then at 8 s intervals) were selected according to the CTP arterial time-density curve to simulate non-contrast CT and mCTA images. Cerebral blood flow (CBF) and Tmax maps were calculated using the same model-based deconvolution algorithm for the standard CTP and surrogate mCTA studies. Infarct and penumbra were delineated with CBF < 20% and Tmax > 6 s threshold, respectively. Classification accuracy of surrogate mCTA target mismatch (infarct <70 ml; penumbra ≥15 ml; mismatch ratio ≥1.8) with respect to standard CTP was assessed. Agreement between infarct and penumbra volumes from standard CTP and surrogate mCTA maps were evaluated by Bland-Altman analysis.

      Results

      Of 34 included patients, 28 had target mismatch and 6 did not by standard CTP. Accuracy of classifying target mismatch profiles with surrogate mCTA was 79% with respect to that from standard CTP. Mean  ±  standard deviation of differences (standard CTP minus surrogate mCTA) of infarct and penumbra volumes were 9.8 ± 14.8 ml and 20.1 ± 45.4 ml, respectively.

      Conclusions

      Surrogate mCTA ischemic lesion volumes agreed with those from standard CTP and may be an efficient alternative when CTP is not practical.

      Key Words

      Abbreviations:

      AIF (Arterial input function), EVT (Endovascular therapy), FIV (Follow-up infarct volume), rCBF (Relative cerebral blood flow), mCTA (Multiphase CT angiography), TDC (Time-density curve), Tmax (Time-to-maximum of the impulse residue function)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Stroke and Cerebrovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Powers W.J.
        • Rabinstein A.A.
        • Ackerson T.
        • et al.
        2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association.
        Stroke. 2018; 49https://doi.org/10.1161/STR.0000000000000158
        • Boulanger J.
        • Lindsay M.
        • Gubitz G.
        • et al.
        Canadian stroke best practice recommendations for acute stroke management: prehospital, emergency department, and acute inpatient stroke care, 6th edition, update 2018.
        Int J Stroke. 2018; 13: 949-984https://doi.org/10.1177/1747493018786616
        • Berkhemer O.A.
        • Fransen P.S.S.
        • Beumer D.
        • et al.
        A randomized trial of intraarterial treatment for acute ischemic stroke.
        N Engl J Med. 2015; 372: 11-20https://doi.org/10.1056/NEJMoa1411587
        • Saver J.L.
        • Goyal M.
        • Bonafe A.
        • et al.
        Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke.
        N Engl J Med. 2015; 372: 2285-2295https://doi.org/10.1056/NEJMoa1415061
        • Goyal M.
        • Demchuk A.M.
        • Menon B.K.
        • et al.
        Randomized assessment of rapid endovascular treatment of ischemic stroke.
        N Engl J Med. 2015; 372: 1019-1030https://doi.org/10.1056/NEJMoa1414905
        • Campbell B.C.V.
        • Mitchell P.J.
        • Kleinig T.J.
        • et al.
        Endovascular therapy for ischemic stroke with perfusion-imaging selection.
        N Engl J Med. 2015; 372: 1009-1018https://doi.org/10.1056/NEJMoa1414792
        • Jovin T.G.
        • Chamorro A.
        • Cobo E.
        • et al.
        Thrombectomy within 8 hours after symptom onset in ischemic stroke.
        N Engl J Med. 2015; 372: 2296-2306https://doi.org/10.1056/NEJMoa1503780
        • Demchuk A.M.
        • Menon B.K.
        • Goyal M.
        Comparing vessel imaging: noncontrast computed tomography/computed tomographic angiography should be the new minimum standard in acute disabling stroke.
        Stroke. 2016; 47: 273-281https://doi.org/10.1161/STROKEAHA.115.009171
        • Nogueira R.G.
        • Jadhav A.P.
        • Haussen D.C.
        • et al.
        Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.
        N Engl J Med. 2018; 378: 11-21https://doi.org/10.1056/NEJMoa1706442
        • Albers G.W.
        • Marks M.P.
        • Kemp S.
        • et al.
        Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging.
        N Engl J Med. 2018; 378: 708-718https://doi.org/10.1056/NEJMoa1713973
        • Ma H.
        • Campbell B.C.V.
        • Parsons M.W.
        • et al.
        Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke.
        N Engl J Med. 2019; 380: 1795-1803https://doi.org/10.1056/NEJMoa1813046
        • Campbell B.C.V.
        • Ma H.
        • Ringleb P.A.
        • et al.
        Extending thrombolysis to 4·5–9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data.
        Lancet. 2019; 394: 139-147https://doi.org/10.1016/S0140-6736(19)31053-0
        • Kim Y.
        • Lee S.
        • Abdelkhaleq R.
        • et al.
        Utilization and availability of advanced imaging in patients with acute ischemic stroke.
        Circ Cardiovasc Qual Outcomes. 2021; 14https://doi.org/10.1161/CIRCOUTCOMES.120.006989
        • Menon B.K.
        • d'Esterre C.D.
        • Qazi E.M.
        • et al.
        Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke.
        Radiology. 2015; 275: 510-520https://doi.org/10.1148/radiol.15142256
        • Health O.
        Automated CT perfusion imaging to aid in the selection of patients with acute ischemic stroke for mechanical thrombectomy: a health technology assessment.
        Ont Health Technol Assess Ser. 2020; 20: 1-87
        • Hopyan J.
        • Ciarallo A.
        • Dowlatshahi D.
        • et al.
        Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography.
        Radiology. 2010; 255: 142-153https://doi.org/10.1148/radiol.09091021
        • Campbell B.C.V.
        • Weir L.
        • Desmond P.M.
        • et al.
        CT perfusion improves diagnostic accuracy and confidence in acute ischaemic stroke.
        J Neurol Neurosurg Psychiatry. 2013; 84: 613-618https://doi.org/10.1136/jnnp-2012-303752
        • Campbell B.C.V.
        • Yassi N.
        • Ma H.
        • et al.
        Imaging selection in ischemic stroke: feasibility of automated CT-perfusion analysis.
        Int J Stroke. 2015; 10: 51-54https://doi.org/10.1111/ijs.12381
        • Reid M.
        • Famuyide A.O.
        • Forkert N.D.
        • et al.
        Accuracy and reliability of multiphase CTA perfusion for identifying ischemic core.
        Clin Neuroradiol. 2019; 29: 543-552https://doi.org/10.1007/s00062-018-0717-x
        • Tian H.
        • Chen C.
        • Garcia-Esperon C.
        • et al.
        Dynamic CT but not optimized multiphase CT angiography accurately identifies CT perfusion target mismatch ischemic stroke patients.
        Front Neurol. 2019; 10: 1130https://doi.org/10.3389/fneur.2019.01130
        • d'Esterre C.D.
        • Trivedi A.
        • Pordeli P.
        • et al.
        Regional comparison of multiphase computed tomographic angiography and computed tomographic perfusion for prediction of tissue fate in ischemic stroke.
        Stroke. 2017; 48: 939-945https://doi.org/10.1161/STROKEAHA.116.015969
        • Ospel J.M.
        • Volny O.
        • Qiu W.
        • et al.
        Impact of multiphase computed tomography angiography for endovascular treatment decision-making on outcomes in patients with acute ischemic stroke.
        J Stroke. 2021; 23: 377-387https://doi.org/10.5853/jos.2021.00619
        • Wang C.
        • Shi Z.
        • Yang M.
        • et al.
        Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA.
        J Cereb Blood Flow Metab. 2021; 41: 3028-3038https://doi.org/10.1177/0271678X211023660
        • Qiu W.
        • Kuang H.
        • Ospel J.M.
        • et al.
        Automated prediction of ischemic brain tissue fate from multiphase computed tomographic angiography in patients with acute ischemic stroke using machine learning.
        J Stroke. 2021; 23: 234-243https://doi.org/10.5853/jos.2020.05064
        • McDougall C.C.
        • Chan L.
        • Sachan S.
        • et al.
        Dynamic CTA-derived perfusion maps predict final infarct volume: the simple perfusion reconstruction algorithm.
        Am J Neuroradiol. 2020; 41: 2034-2040https://doi.org/10.3174/ajnr.A6783
        • Yeung T.P.C.
        • Yartsev S.
        • Bauman G.
        • He W.
        • Fainardi E.
        • Lee T.Y.
        The effect of scan duration on the measurement of perfusion parameters in CT perfusion studies of brain tumors.
        Acad Radiol. 2013; 20: 59-65https://doi.org/10.1016/j.acra.2012.08.013
        • Kasasbeh A.S.
        • Christensen S.
        • Straka M.
        • et al.
        Optimal computed tomographic perfusion scan duration for assessment of acute stroke lesion volumes.
        Stroke. 2016; 47: 2966-2971https://doi.org/10.1161/STROKEAHA.116.014177
        • Lee T.Y.
        • Yang D.M.
        • Li F.
        • Marants R.
        CT perfusion techniques and applications in stroke and cancer.
        in: Samei E Pelc NJ Computed Tomography : Approaches, Applications, and Operations. Springer International Publishing, 2020: 347-365https://doi.org/10.1007/978-3-030-26957-9_19
        • d'Esterre C.D.
        • Boesen M.E.
        • Ahn S.H.
        • et al.
        Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke.
        Stroke. 2015; 46: 3390-3397https://doi.org/10.1161/STROKEAHA.115.009250
        • Straka M.
        • Albers G.W.
        • Bammer R.
        Real-time diffusion-perfusion mismatch analysis in acute stroke.
        J Magn Reson Imaging. 2010; 32: 1024-1037https://doi.org/10.1002/jmri.22338
        • Yushkevich P.A.
        • Piven J.
        • Cody Hazlett H.
        • et al.
        User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability.
        Neuroimage. 2006; 31: 1116-1128
        • Grotta J.C.
        • Chiu D.
        • Lu M.
        • et al.
        Agreement and variability in the interpretation of early CT changes in stroke patients qualifying for intravenous rtPA therapy.
        Stroke. 1999; 30: 1528-1533https://doi.org/10.1161/01.STR.30.8.1528
        • Bal S.
        • Bhatia R.
        • Menon B.K.
        • et al.
        Time dependence of reliability of noncontrast computed tomography in comparison to computed tomography angiography source image in acute ischemic stroke.
        Int J Stroke. 2015; 10: 55-60https://doi.org/10.1111/j.1747-4949.2012.00859.x
        • McTaggart R.A.
        • Jovin T.G.
        • Lansberg M.G.
        • et al.
        Alberta stroke program early computed tomographic scoring performance in a series of patients undergoing computed tomography and MRI: reader agreement, modality agreement, and outcome prediction.
        Stroke. 2015; 46: 407-412https://doi.org/10.1161/STROKEAHA.114.006564
        • Fiebach J.B.
        • Schellinger P.D.
        • Jansen O.
        • et al.
        CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke.
        Stroke. 2002; 33: 2206-2210https://doi.org/10.1161/01.STR.0000026864.20339.CB
        • Naylor J.
        • Churilov L.
        • Chen Z.
        • Koome M.
        • Rane N.
        • Campbell B.C.V.
        Reliability, reproducibility and prognostic accuracy of the alberta stroke program early CT score on CT perfusion and non-contrast CT in hyperacute stroke.
        Cerebrovasc Dis. 2017; 44: 195-202https://doi.org/10.1159/000479707
        • Wang T.
        • Chen L.
        • Jin X.
        • et al.
        CT perfusion based ASPECTS improves the diagnostic performance of early ischemic changes in large vessel occlusion.
        BMC Med Imaging. 2021; 21: 67https://doi.org/10.1186/s12880-021-00593-5
        • Nannoni S.
        • Ricciardi F.
        • Strambo D.
        • et al.
        Correlation between ASPECTS and core volume on CT perfusion: impact of time since stroke onset and presence of large-vessel occlusion.
        Am J Neuroradiol. 2021; 42: 422-428https://doi.org/10.3174/ajnr.A6959
        • Finlayson O.
        • John V.
        • Yeung R.
        • et al.
        Interobserver agreement of ASPECT score distribution for noncontrast CT, CT angiography, and CT perfusion in acute stroke.
        Stroke. 2013; 44: 234-236https://doi.org/10.1161/STROKEAHA.112.665208
        • Boned S.
        • Padroni M.
        • Rubiera M.
        • et al.
        Admission CT perfusion may overestimate initial infarct core: the ghost infarct core concept.
        J NeuroInterventional Surg. 2017; 9: 66-69https://doi.org/10.1136/neurintsurg-2016-012494
        • Martins N.
        • Aires A.
        • Mendez B.
        • et al.
        Ghost infarct core and admission computed tomography perfusion: redefining the role of neuroimaging in acute ischemic stroke.
        Interv Neurol. 2018; 7: 513-521https://doi.org/10.1159/000490117
        • Rodrigues G.M.
        • Mohammaden M.H.
        • Haussen D.C.
        • et al.
        Ghost infarct core following endovascular reperfusion: a risk for computed tomography perfusion misguided selection in stroke.
        Int J Stroke. 2021; (Published online November 19,)174749302110562https://doi.org/10.1177/17474930211056228
        • García-Tornel Á.
        • Campos D.
        • Rubiera M.
        • et al.
        Ischemic core overestimation on computed tomography perfusion.
        Stroke. 2021; 52: 1751-1760https://doi.org/10.1161/STROKEAHA.120.031800
        • Olive-Gadea M.
        • Requena M.
        • Diaz F.
        • et al.
        Systematic CT perfusion acquisition in acute stroke increases vascular occlusion detection and thrombectomy rates.
        J NeuroInterventional Surg. 2021; (Published online December 2,neurintsurg-2021-018241)https://doi.org/10.1136/neurintsurg-2021-018241
        • Amukotuwa S.A.
        • Wu A.
        • Zhou K.
        • Page I.
        • Brotchie P.
        • Bammer R.
        Distal medium vessel occlusions can be accurately and rapidly detected using Tmax maps.
        Stroke. 2021; 52: 3308-3317https://doi.org/10.1161/STROKEAHA.120.032941
        • Bathla G.
        • Pillenahalli Maheshwarappa R.
        • Soni N.
        • et al.
        CT perfusion maps improve detection of M2-MCA occlusions in acute ischemic stroke.
        J Stroke Cerebrovasc Dis. 2022; 31106473https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106473
        • Becks M.J.
        • Manniesing R.
        • Vister J.
        • et al.
        Brain CT perfusion improves intracranial vessel occlusion detection on CT angiography.
        J Neuroradiol. 2019; 46: 124-129https://doi.org/10.1016/j.neurad.2018.03.003
        • McDonough R.V.
        • Qiu W.
        • Ospel J.M.
        • Menon B.K.
        • Cimflova P.
        • Goyal M.
        Multiphase CTA-derived tissue maps aid in detection of medium vessel occlusions.
        Neuroradiology. 2021; (Published online October 19,)https://doi.org/10.1007/s00234-021-02830-8
        • Olivot J.M.
        • Mlynash M.
        • Inoue M.
        • et al.
        Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 cohort.
        Stroke. 2014; 45: 1018-1023https://doi.org/10.1161/STROKEAHA.113.003857
        • Arenillas J.F.
        • Cortijo E.
        • García-Bermejo P.
        • et al.
        Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME.
        J Cereb Blood Flow Metab. 2018; 38: 1839-1847https://doi.org/10.1177/0271678X17740293
        • Shi F.
        • Gong X.
        • Liu C.
        • et al.
        Acute stroke: prognostic value of quantitative collateral assessment at perfusion CT.
        Radiology. 2019; 290: 760-768https://doi.org/10.1148/radiol.2019181510
        • Potreck A.
        • Scheidecker E.
        • Weyland C.S.
        • et al.
        RAPID CT perfusion–based relative CBF identifies good collateral status better than hypoperfusion intensity ratio, CBV-index, and time-to-maximum in anterior circulation stroke.
        Am J Neuroradiol. 2022; (Published online June 9,ajnr;ajnr.A7542v1)https://doi.org/10.3174/ajnr.A7542
        • Guenego A.
        • Fahed R.
        • Albers G.W.
        • et al.
        Hypoperfusion intensity ratio correlates with angiographic collaterals in acute ischaemic stroke with M1 occlusion.
        Eur J Neurol. 2020; 27: 864-870https://doi.org/10.1111/ene.14181
        • Lyndon D.
        • van den Broek M.
        • Niu B.
        • Yip S.
        • Rohr A.
        • Settecase F.
        Hypoperfusion intensity ratio correlates with CTA collateral status in large-vessel occlusion acute ischemic stroke.
        Am J Neuroradiol. 2021; 42: 1380-1386https://doi.org/10.3174/ajnr.A7181
        • Campbell B.C.V.
        Optimal imaging at the primary stroke center.
        Stroke. 2020; 51: 1932-1940https://doi.org/10.1161/STROKEAHA.119.026734
        • Copen W.A.
        • Deipolyi A.R.
        • Schaefer P.W.
        • Schwamm L.H.
        • González R.G.
        • Wu O.
        Exposing hidden truncation-related errors in acute stroke perfusion imaging.
        Am J Neuroradiol. 2015; 36: 638-645https://doi.org/10.3174/ajnr.A4186
        • Nguyen T.N.
        • Abdalkader M.
        • Nagel S.
        • et al.
        Noncontrast computed tomography vs computed tomography perfusion or magnetic resonance imaging selection in late presentation of stroke with large-vessel occlusion.
        JAMA Neurol. 2021; (Published online November 8,)https://doi.org/10.1001/jamaneurol.2021.4082
        • Harvey E.C.
        • Li K.
        Leveraging non-contrast head CT to improve the image quality of cerebral CT perfusion maps.
        J Med Imaging. 2020; 7https://doi.org/10.1117/1.JMI.7.6.063504
        • Pfaff J.A.R.
        • Füssel B.
        • Harlan M.E.
        • Hubert A.
        • Bendszus M.
        Variability of acquisition phase of computed tomography angiography in acute ischemic stroke in a real-world scenario.
        Eur Radiol. 2021; (Published online June 15,)https://doi.org/10.1007/s00330-021-08084-5
        • Kuang H.
        • Qiu W.
        • Boers A.M.
        • et al.
        Computed tomography perfusion–based machine learning model better predicts follow-up infarction in patients with acute ischemic stroke.
        Stroke. 2021; 52: 223-231https://doi.org/10.1161/STROKEAHA.120.030092