Advertisement

Borderzone infarction and recurrent stroke in intracranial atherosclerosis

      Abstract

      Background

      Intracranial stenosis (ICAS) is a common cause of stroke worldwide and patients with symptomatic ICAS exhibit a high rate of recurrence, particularly in the early period after the initial event. In this study, we aimed to study the association between borderzone infarct and recurrent ischemic stroke in patients hospitalized with symptomatic ICAS.

      Methods

      This is a retrospective single center study that included patients hospitalized with acute ischemic stroke in the setting of intracranial stenosis (50% or more and an acute ischemic stroke in the territory supplied by the stenosed artery) over a 32-month period. We excluded patients who did not receive a brain MRI or did not have an infarct on brain imaging. The primary predictor is infarct pattern (any borderzone vs. no borderzone infarct) and the primary outcome was recurrent cerebrovascular events (RCVE) within 90 days. We used unadjusted, and age and sex adjusted logistic regression models to determine associations between infarct pattern and RCVE at 90-days.

      Results

      Among 99 patients who met the inclusion criteria (4 tandem), the mean age was 70.1 ± 11.2 years and 41.4% were women; 43 had borderzone infarcts and 19 had RCVE. In adjusted binary logistic regression analysis, borderzone infarct was associated with increased risk of RCVE (adjusted OR 4.00 95% CI 1.33-11.99, p=0.013). The association between borderzone infarction and RCVE was not different among anterior circulation ICAD (adjusted HR 2.85 95% CI 0.64-12.76, p=0.172) vs. posterior circulation ICAD (adjusted HR 6.69 95% CI 1.06-42.11, p=0.043), p-value for interaction = 0.592.

      Conclusion

      In real world post-SAMMPRIS medically treated patients with ICAD, the borderzone infarct pattern was associated with 90-day RCVE. Borderzone infarcts are likely a surrogate marker of impaired distal blood flow, highlighting the importance of targeting stroke mechanisms and developing alternative treatment strategies for high-risk cohorts.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Stroke and Cerebrovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flusty B.
        • de Havenon A.
        • Prabhakaran S.
        • Liebeskind D.S.
        • Yaghi S.
        Intracranial atherosclerosis treatment: past, present, and future.
        Stroke. 2020; 51: e49-e53
        • Yaghi S.
        • Prabhakaran S.
        • Khatri P.
        • Liebeskind D.S.
        Intracranial atherosclerotic disease.
        Stroke. 2019; 50: 1286-1293
        • Banerjee C.
        • Chimowitz M.I.
        Stroke caused by atherosclerosis of the major intracranial arteries.
        Circul Res. 2017; 120: 502-513
        • Sacco R.L.
        • Kargman D.E.
        • Zamanillo M.C.
        Race-ethnic differences in stroke risk factors among hospitalized patients with cerebral infarction: The northern manhattan stroke study.
        Neurology. 1995; 45: 659-663
        • Wong L.K.
        Global burden of intracranial atherosclerosis.
        Int J Stroke. 2006; 1: 158-159
        • Amin-Hanjani S.
        • Pandey D.K.
        • Rose-Finnell L.
        • Du X.
        • Richardson D.
        • Thulborn K.R.
        • et al.
        Effect of hemodynamics on stroke risk in symptomatic atherosclerotic vertebrobasilar occlusive disease.
        JAMA Neurol. 2016; 73: 178-185
        • Liebeskind D.S.
        • Derdeyn C.P.
        • Sanossian N.
        • Cotsonis G.A.
        • Scalzo F.
        • Prabhakaran S.
        • et al.
        Abstract 138: perfusion imaging of intracranial atherosclerotic disease in sammpris.
        Stroke. 2015; 46 (A138-A138)
        • de Havenon A.
        • Khatri P.
        • Prabhakaran S.
        • Yeatts S.D.
        • Peterson C.
        • Sacchetti D.
        • et al.
        Hypoperfusion distal to anterior circulation intracranial atherosclerosis is associated with recurrent stroke.
        J Neuroimaging. 2020; 30: 468-470
        • Prabhakaran S.
        • Sangha R.
        • Ansari S.
        • Romano J.
        • Sylaja P.
        • Liebeskind D.S.
        Abstract wmp45: borderzone infarct pattern predicts recurrent stroke in patients with intracranial stenosis.
        Stroke. 2020; 51 (AWMP45-AWMP45)
        • Yaghi S.
        • Grory B.M.
        • Prabhakaran S.
        • Yeatts S.D.
        • Cutting S.
        • Jayaraman M.
        • et al.
        Infarct pattern, perfusion mismatch thresholds, and recurrent cerebrovascular events in symptomatic intracranial stenosis.
        J Neuroimaging. 2019; 29: 640-644
        • Prabhakaran S.
        • Liebeskind D.S.
        • Cotsonis G.
        • Nizam A.
        • Feldmann E.
        • Sangha R.S.
        • et al.
        Predictors of early infarct recurrence in patients with symptomatic intracranial atherosclerotic disease.
        Stroke. 2021; 52: 1961-1966
        • Holmstedt C.A.
        • Turan T.N.
        • Chimowitz M.I.
        Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment.
        The Lancet. Neurology. 2013; 12: 1106-1114
        • Narwal P.
        • Cutting S.
        • Prabhakaran S.
        • Yaghi S.
        Diagnosis and management of active intracranial atherosclerotic disease: a case study.
        Stroke. 2018; 49: e221-e223
        • Dakay K.
        • Yaghi S.
        Symptomatic intracranial atherosclerosis with impaired distal perfusion: a case study.
        Stroke. 2018; 49: e10-e13
        • Mangla R.
        • Kolar B.
        • Almast J.
        • Ekholm S.E.
        Border zone infarcts: pathophysiologic and imaging characteristics.
        Radiographics. 2011; 31: 1201-1214
        • Mounier-Vehier F.
        • Degaey I.
        • Leclerc X.
        • Leys D.
        Cerebellar border zone infarcts are often associated with presumed cardiac sources of ischaemic stroke.
        J Neurol Neurosurg Psychiatry. 1995; 59: 87-89
        • Amarenco P.
        • Kase C.S.
        • Rosengart A.
        • Pessin M.S.
        • Bousser M.G.
        • Caplan L.R.
        Very small (border zone) cerebellar infarcts. Distribution, causes, mechanisms and clinical features.
        Brain. 1993; 116: 161-186
        • Wright J.N.
        • Shaw D.W.W.
        • Ishak G.
        • Doherty D.
        • Perez F.
        Cerebellar watershed injury in children.
        AJNR Am J Neuroradiol. 2020; 41: 923-928
        • Yaghi S.
        • Grory B.M.
        • Prabhakaran S.
        • Yeatts S.D.
        • Cutting S.
        • Jayaraman M.
        • et al.
        Infarct pattern, perfusion mismatch thresholds, and recurrent cerebrovascular events in symptomatic intracranial stenosis.
        J Neuroimaging. 2019;
        • Kim S.J.
        • Morales J.M.
        • Yaghi S.
        • Honda T.
        • Scalzo F.
        • Hinman J.D.
        • et al.
        Intracranial atherosclerotic disease mechanistic subtypes drive hypoperfusion patterns.
        J Neuroimaging. 2021; 31: 686-690
        • Momjian-Mayor I.
        • Baron J.C.
        The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies.
        Stroke. 2005; 36: 567-577
        • Prabhakaran S.
        Borderzone infarct pattern predicts recurrent stroke in patients with intracranial stenosis.
        Stroke. 2020; 51
        • Wabnitz A.M.
        • Derdeyn C.P.
        • Fiorella D.J.
        • Lynn M.J.
        • Cotsonis G.A.
        • Liebeskind D.S.
        • et al.
        Hemodynamic markers in the anterior circulation as predictors of recurrent stroke in patients with intracranial stenosis.
        Stroke. 2018; (Strokeaha118020840)
        • Kvernland A.
        • Prahbakaran S.
        • Khatri P.
        • Havenon A.H.D.
        • Yeatts S.D.
        • Scher E.
        • et al.
        Abstract p605: Border-zone infarcts predict early recurrence in patients with large artery atherosclerotic subtype despite medical treatment.
        Stroke. 2021; 52 (AP605-AP605)
        • Liu D.
        • Sun W.
        • Scalzo F.
        • Xiong Y.
        • Zhang X.
        • Qiu Z.
        • et al.
        Early magnetic resonance imaging predicts early neurological deterioration in acute middle cerebral artery minor stroke.
        J Stroke Cerebrovasc Dis. 2016; 25: 469-474
        • Kim J.T.
        • Kim H.J.
        • Yoo S.H.
        • Park M.S.
        • Kwon S.U.
        • Cho K.H.
        • et al.
        Mri findings may predict early neurologic deterioration in acute minor stroke or transient ischemic attack due to intracranial atherosclerosis.
        Eur Neurol. 2010; 64: 95-100
        • Derdeyn C.P.
        • Chimowitz M.I.
        • Lynn M.J.
        • Fiorella D.
        • Turan T.N.
        • Janis L.S.
        • et al.
        Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (sammpris): the final results of a randomised trial.
        Lancet (London, England). 2014; 383: 333-341
        • Chimowitz M.I.
        • Lynn M.J.
        • Derdeyn C.P.
        • Turan T.N.
        • Fiorella D.
        • Lane B.F.
        • et al.
        Stenting versus aggressive medical therapy for intracranial arterial stenosis.
        N Engl J Med. 2011; 365: 993-1003
        • Zaidat O.O.
        • Fitzsimmons B.F.
        • Woodward B.K.
        • Wang Z.
        • Killer-Oberpfalzer M.
        • Wakhloo A.
        • et al.
        Effect of a balloon-expandable intracranial stent vs medical therapy on risk of stroke in patients with symptomatic intracranial stenosis: the vissit randomized clinical trial.
        Jama. 2015; 313: 1240-1248
        • Alexander M.J.
        • Zauner A.
        • Chaloupka J.C.
        • Baxter B.
        • Callison R.C.
        • Gupta R.
        • et al.
        Weave trial: final results in 152 on-label patients.
        Stroke. 2019; 50: 889-894
        • Wang Y.
        • Wang T.
        • Dmytriw A.A.
        • Yang K.
        • Jiao L.
        • Shi H.
        • et al.
        Safety of endovascular therapy for symptomatic intracranial artery stenosis: a national prospective registry.
        Stroke Vasc Neurol. 2021;
        • Stapleton C.J.
        • Chen Y.F.
        • Shallwani H.
        • Vakharia K.
        • Turan T.N.
        • Woo H.H.
        • et al.
        Submaximal angioplasty for symptomatic intracranial atherosclerotic disease: a meta-analysis of peri-procedural and long-term risk.
        Neurosurgery. 2020; 86: 755-762
        • Zaidat O.O.
        • Klucznik R.
        • Alexander M.J.
        • Chaloupka J.
        • Lutsep H.
        • Barnwell S.
        • et al.
        The NIH registry on use of the wingspan stent for symptomatic 70-99% intracranial arterial stenosis.
        Neurology. 2008; 70: 1518-1524
        • Fiorella D.
        • Levy E.I.
        • Turk A.S.
        • Albuquerque F.C.
        • Niemann D.B.
        • Aagaard-Kienitz B.
        • et al.
        Us multicenter experience with the wingspan stent system for the treatment of intracranial atheromatous disease: Periprocedural results.
        Stroke. 2007; 38: 881-887